Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 14: 1340910, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606300

RESUMO

Vibrios are associated with live seafood because they are part of the indigenous marine microflora. In Asia, foodborne infections caused by Vibrio spp. are common. In recent years, V. parahaemolyticus has become the leading cause of all reported food poisoning outbreaks. Therefore, the halogenated acid and its 33 derivatives were investigated for their antibacterial efficacy against V. parahaemolyticus. The compounds 3,5-diiodo-2-methoxyphenylboronic acid (DIMPBA) and 2-fluoro-5-iodophenylboronic acid (FIPBA) exhibited antibacterial and antibiofilm activity. DIMPBA and FIPBA had minimum inhibitory concentrations of 100 µg/mL for the planktonic cell growth and prevented biofilm formation in a dose-dependent manner. Both iodo-boric acids could diminish the several virulence factors influencing the motility, agglutination of fimbria, hydrophobicity, and indole synthesis. Consequently, these two active halogenated acids hampered the proliferation of the planktonic and biofilm cells. Moreover, these compounds have the potential to effectively inhibit the presence of biofilm formation on the surface of both squid and shrimp models.


Assuntos
Ácidos Borônicos , Vibrio parahaemolyticus , Vibrio , Biofilmes , Fatores de Virulência/farmacologia , Antibacterianos/farmacologia
2.
Chemosphere ; 355: 141790, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554870

RESUMO

Cadmium sulfide-tin sulfide (CdS-SnS) nanoparticles are a novel kind of photocatalyst. These CdS-SnS nanoparticles are synthesized and characterized using UV-Vis, FT-IR, XRD, SEM-EDX, and DLS techniques, to understand their size distribution, crystalline nature, morphology, shape, optical properties, and elemental composition. This research offers insight into the efficient photocatalytic degradation of Phenanthrene (PHE) using CdS-SnS. The CdS-SnS NPs as photocatalyst can effectively photodegrade the polycyclic aromatic hydrocarbons (PAH) such as phenanthrene under simulated solar and UV light. UV-vis spectra of these nanoparticles exhibit peaks at 365 and 546 cm-1 respectively, the mean size of the CdS-SnS NPs in DLS is determined to be 78 nm. The CdS-SnS stretching frequency was observed at wave numbers below 700 cm-1, the absorption peak at 1123 cm-1 indicates the presence of C-N stretch or CS bond of thiourea, while the peak at 1350.38 cm-1 corresponds to the tris-amine C-N stretch in FT-IR. Additionally, the peaks observed at 2026 cm-1 indicate the presence of isothiocyanate (NCS). 1456.23 cm-1 represents the asymmetric scissor deformation vibration. EDAX revealed the presence of elemental Cd and Sn oxides. The antimicrobial studies showed that the CdS-SnS NPs at the concentration of 150 µg/mL, exhibit maximum inhibition (15 ± 1.25 mm) against the strains Proteus mirabilis followed by Staphylococcus epidermidis and Clostridium spp. Among fungal strains Colletotrichum spp. exhibits the maximum zone of inhibition (9 ± 0.25). This research also observed the cytotoxic effects of CdS-SnS NPs on HepG2 and ZF4 cells. HepG2 cells exhibited 50% inhibition at 50 µg/mL and 70% inhibition at 100 µg/mL concentrations, while ZF4 cells exhibited 50% inhibition at 50 µg/mL and 78% inhibition at 100 µg/mL concentrations, respectively. The parameters like concentration of PHE, concentration of CdS-SnS NPs, pH, and sources of irradiation on batch adsorption were examined to maximize the efficiency of the photodegradation process.


Assuntos
Compostos de Cádmio , Nanopartículas , Fenantrenos , Sulfetos , Luz , Espectroscopia de Infravermelho com Transformada de Fourier , Nanopartículas/química , Fenantrenos/toxicidade
3.
Artigo em Inglês | MEDLINE | ID: mdl-38244161

RESUMO

Fluoride ions must be removed from drinking water in order to prevent fluorosis. Many conventional techniques have been examined for the defluoridation of water all over the world. As far as fluoride ions are concerned, adsorption is the most promising method for the removal of them from aqueous environments. In the present study, we aim to find out how well Euphorbia neriifolia plants can remove fluoride from water using activated and carbonized adsorbents. The Euphorbia neriifolia plant stem was pulverized, dried, and activated using calcium ions extracted from used eggshells collected nearby. The synthesized adsorbent material before and after adsorption of fluoride ions was systematically characterized using FTIR, XRD, SEM with EDAX, TGA, and zero-point charge. The defluoridation capacity of the as-prepared adsorbent material was investigated using batch adsorption studies. Various influencing factors such as contact time, solution pH, initial fluoride concentration, mass of the adsorbent, temperature, and co-existing ions were systematically investigated towards the removal of fluoride ion on prepared adsorbent material. This study was conducted to identify the optimal conditions of prepared adsorbent for the maximum removal of fluoride ions from aqueous solution. A groundwater sample with fluoride content of more than 1.5 ppm was taken and studied in this present work. A basic quality indicator of the synthesized material was examined, and its ability to remove fluoride was determined. The findings provide insight into the selective elimination of fluoride ions from aqueous environment.

4.
Chemosphere ; 350: 141122, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184078

RESUMO

A few PAHs (polycyclic aromatic hydrocarbons) which are known to be pervasive and are of high priority are found to be detrimental pollutants having high potential in the destruction of the network. Hence, photocatalytic disintegration of these PAHs, namely benzo [a]pyrene, found in water is explored. A novel nanocomposite of Ag-Ni on g-C3N4 was fabricated. The prepared nanocomposites were characterized by techniques like UV, XRD, SEM-EDAX, FTIR, and DLS to understand their nature. The activity of the same as a catalyst in the deterioration of the benzopyrene molecule in water was investigated under different conditions including change in the concentration of the PAH, dosage of the catalyst prepared, pH of the reaction mixture, and by changing the source of irradiation. In addition, antibacterial analysis of the prepared nanocomposite material was conducted to determine whether it could be applied to environmental cleanup strategies of high quality.


Assuntos
Grafite , Nanocompostos , Compostos de Nitrogênio , Hidrocarbonetos Policíclicos Aromáticos , Prata/química , Benzo(a)pireno , Níquel , Luz , Antibacterianos/farmacologia , Antibacterianos/química , Nanocompostos/química , Água , Catálise
5.
Environ Res ; 242: 117793, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040176

RESUMO

This research was performed to assess the influence of Cd and Cr metals on growth, pigments, antioxidant, and genomic stability of Oryza sativa indica and Oryza sativa japonica were investigated under hydroponic conditions. The results revealed that significant metal influence on test crop growth, pigment content, metal stress balancing antioxidant activity in a dose dependent manner. Since, while at elevated (500 ppm) concentration of Cd as well as Cr metals the pigment (total chlorophyll, chlorophyll a, b and carotenoids) level was reduced than control; however antioxidant activity (total antioxidant, H2O2, and NO) was considerably improved as protective mechanisms to combat the metal toxicity and support the plant growth. Furthermore, the test crops under typical hydroponic medium (loaded with Cd and Cr as 200, 300, 400, and 500 ppm) growth conditions, effectively absorb the metals from medium and accumulated in the root and least quantity was translocated to the shoot of this test crops. Furthermore, typical RAPD analysis with 10 universal primers demonstrated that the genomic DNA of the test crops was adaptable to develop metal resistance and ensure crop growth under increased concentrations (500 ppm) of tested heavy metals. These findings suggest that these edible crops have the ability to accumulate Cd along with Cr metals, and additionally that their genetic systems have the ability to adapt to metal-stressed environments.


Assuntos
Metais Pesados , Oryza , Poluentes do Solo , Cromo/toxicidade , Cromo/análise , Antioxidantes/farmacologia , Oryza/genética , Cádmio/toxicidade , Cádmio/análise , Clorofila A/análise , Clorofila A/farmacologia , Hidroponia , Peróxido de Hidrogênio , Técnica de Amplificação ao Acaso de DNA Polimórfico , Metais Pesados/toxicidade , Metais Pesados/análise , Produtos Agrícolas , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
6.
Int J Biol Macromol ; 258(Pt 2): 128970, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154723

RESUMO

The utilization of banana fiber derived from micro-cellulose (MC) was exploited as a supporting material for advanced oxidation process (AOP) on the degradation of methylene blue and methyl violet dyes in the presence of H2O2-UV in aqueous medium for the first time using green chemistry protocols. Additionally, it was also effectively utilized for the adsorption of methylene blue dye using addition of H2O2 in the presence of sunlight. The MC powder was fabricated using an acid alkali process from the pseudo-stem of a banana tree. The as-fabricated MC powder was systematically characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectrometer (EDX), and zero point charge (pHzpc). The AOP assisted degradation of dye molecules was monitored by using calorimetric techniques as a function of dye concentration and pH in a batch reactor. In a short period of time, the maximum degradation efficiency of 98 % of methylene blue was achieved using MC powder assisted H2O2 under UV irradiation at a minimum irradiation time of 120 min at pH 7.0 using dosage of 0.2 g/L. However, in the absence of UV light, the degradation efficiency of MC powder assisted H2O2 was only about 5-10 % without UV light irradiation. The dye removal was studied as a function of various operational parameters such as pH (3-11), catalyst dose (0.2-0.6 g/L), and initial dye concentration (100-400 mg/L). In the presence of H2O2-sunlight and 0.2 g/L of dosage at pH 7.0 at a minimum contact time of 120 min, MC fiber showed maximum adsorption capacities of 98% and 85% for 100 mg/L and 400 mg/L of methylene blue concentrations. According to the obtained data, the adsorption of methylene blue dye on MC follows the Freundlich isotherm model (R2 = 0.9886) and pseudo-first-order kinetic model (R2 = 0.9596) due to the higher regression coefficients. This process of dye degradation and adsorption process is a novel one and environmentally benign for an effective removal of hazardous dyes.


Assuntos
Musa , Poluentes Químicos da Água , Celulose , Vapor , Adsorção , Corantes/química , Azul de Metileno/química , Peróxido de Hidrogênio , Pós , Catálise , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Front Cell Infect Microbiol ; 13: 1234668, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662002

RESUMO

Gram-negative Vibrio species are major foodborne pathogens often associated with seafood intake that causes gastroenteritis. On food surfaces, biofilm formation by Vibrio species enhances the resistance of bacteria to disinfectants and antimicrobial agents. Hence, an efficient antibacterial and antibiofilm approach is urgently required. This study examined the antibacterial and antivirulence effects of chromones and their 26 derivatives against V. parahaemolyticus and V. harveyi. 6-Bromo-3-formylchromone (6B3FC) and 6-chloro-3-formylchromone (6C3FC) were active antibacterial and antibiofilm compounds. Both 6B3FC and 6C3FC exhibited minimum inhibitory concentrations (MICs) of 20 µg/mL for planktonic cell growth and dose-dependently inhibited biofilm formation. Additionally, they decreased swimming motility, protease activity, fimbrial agglutination, hydrophobicity, and indole production at 20 µg/mL which impaired the growth of the bacteria. Furthermore, the active compounds could completely inhibit the slimy substances and microbial cells on the surface of the squid and shrimp. The most active compound 6B3FC inhibited the gene expression associated in quorum sensing and biofilm formation (luxS, opaR), pathogenicity (tdh), and membrane integrity (vmrA) in V. parahaemolyticus. However, toxicity profiling using seed germination and Caenorhabditis elegans models suggests that 6C3FC may have moderate effect at 50 µg/mL while 6B3FC was toxic to the nematodes 20-100 µg/mL. These findings suggest chromone analogs, particularly two halogenated formylchromones (6B3FC and 6C3FC), were effective antimicrobial and antibiofilm agents against V. parahaemolyticus in the food and pharmaceutical sectors.


Assuntos
Anti-Infecciosos , Vibrio parahaemolyticus , Animais , Antibacterianos/farmacologia , Caenorhabditis elegans , Biofilmes
8.
Front Nutr ; 10: 1229243, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37743910

RESUMO

The multifaceted role of vitamin C in human health intrudes several biochemical functions that are but not limited to antioxidant activity, homoeostasis, amino acid synthesis, collagen synthesis, osteogenesis, neurotransmitter production and several yet to be explored functions. In absence of an innate biosynthetic pathway, humans are obligated to attain vitamin C from dietary sources to maintain its optimal serum level (28 µmol/L). However, a significant amount of naturally occurring vitamin C may deteriorate due to food processing, storage and distribution before reaching to the human gastrointestinal tract, thus limiting or mitigating its disease combating activity. Literature acknowledges the growing prevalence of vitamin C deficiency across the globe irrespective of geographic, economic and population variations. Several tools have been tested to address vitamin C deficiency, which are primarily diet diversification, biofortification, supplementation and food fortification. These strategies inherit their own advantages and limitations. Opportunely, nanotechnology promises an array of delivery systems providing encapsulation, protection and delivery of susceptible compounds against environmental factors. Lack of clear understanding of the suitability of the delivery system for vitamin C encapsulation and fortification; growing prevalence of its deficiency, it is a need of the hour to develop and design vitamin C fortified food ensuring homogeneous distribution, improved stability and enhanced bioavailability. This article is intended to review the importance of vitamin C in human health, its recommended daily allowance, its dietary sources, factors donating to its stability and degradation. The emphasis also given to review the strategies adopted to address vitamin c deficiency, delivery systems adopted for vitamin C encapsulation and fortification.

9.
Biomimetics (Basel) ; 8(5)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37754197

RESUMO

Nanozymes represent a category of nano-biomaterial artificial enzymes distinguished by their remarkable catalytic potency, stability, cost-effectiveness, biocompatibility, and degradability. These attributes position them as premier biomaterials with extensive applicability across medical, industrial, technological, and biological domains. Following the discovery of ferromagnetic nanoparticles with peroxidase-mimicking capabilities, extensive research endeavors have been dedicated to advancing nanozyme utilization. Their capacity to emulate the functions of natural enzymes has captivated researchers, prompting in-depth investigations into their attributes and potential applications. This exploration has yielded insights and innovations in various areas, including detection mechanisms, biosensing techniques, and device development. Nanozymes exhibit diverse compositions, sizes, and forms, resembling molecular entities such as proteins and tissue-based glucose. Their rapid impact on the body necessitates a comprehensive understanding of their intricate interplay. As each day witnesses the emergence of novel methodologies and technologies, the integration of nanozymes continues to surge, promising enhanced comprehension in the times ahead. This review centers on the expansive deployment and advancement of nanozyme materials, encompassing biomedical, biotechnological, and environmental contexts.

10.
Int J Food Microbiol ; 384: 109954, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36257185

RESUMO

Gram-negative Vibrio parahaemolyticus is a halophilic human pathogen known to be the leading cause of food poisoning associated with consuming uncooked or undercooked seafood. The increasing presence and contamination of seafood have caused serious safety concerns in food facilities. Notably, it can form biofilms on food surfaces that confer resistance to antimicrobial treatments. Therefore, in the present study, the antibacterial, antibiofilm, and antivirulence activities of hydroquinone (HQ) and its 16 derivatives were investigated against V. parahaemolyticus and V. harveyi. Representative active antibacterial and antibiofilm compounds, 2,3-dimethylhydroquinone (2,3-DMHQ) and 2,5-ditert-butylhydroquinone (DBHQ), were further examined using a crystal violet assay, biochemical reactions, live cell imaging, and scanning electron microscopy. 2,3-DMHQ with a minimum inhibitory concentration (MIC) of 20 µg/mL completely inhibited biofilm formation at a sub-MIC of 15 µg/mL. And, DBHQ with an MIC of ˃1000 µg/mL reduced biofilm formation by 70 % at sub-MIC of 25 µg/mL. Both 2,3-DMHQ and DBHQ inhibited protease and indole production as well as motility phenotypes. 2,3-DMHQ decreased fimbriae production and hydrophobicity whereas DBHQ did not. Transcriptomic studies revealed that genes related to biofilm, quorum sensing (QS), and hemolysin were downregulated. In addition, 2,3-DMHQ and DBHQ prevented biofilm formation of V. parahaemolyticus on squid surfaces and 2,3-DMHQ reduced the presence of V. parahaemolyticus in a boiled shrimp model. Toxicity assays using the Caenorhabditis elegans and seed germinations models showed that they were non-to-mildly toxic. These results suggest that 2,3-DMHQ and DBHQ possess the antimicrobial properties required to control V. parahaemolyticus planktonic and biofilm states in food production facilities.


Assuntos
Vibrio parahaemolyticus , Fatores de Virulência , Humanos , Hidroquinonas/farmacologia , Biofilmes , Antibacterianos/farmacologia
11.
Vaccines (Basel) ; 10(11)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36423060

RESUMO

Despite the progress in the comprehension of LC progression, risk, immunologic control, and treatment choices, it is still the primary cause of cancer-related death. LC cells possess a very low and heterogeneous antigenicity, which allows them to passively evade the anticancer defense of the immune system by educating cytotoxic lymphocytes (CTLs), tumor-infiltrating lymphocytes (TILs), regulatory T cells (Treg), immune checkpoint inhibitors (ICIs), and myeloid-derived suppressor cells (MDSCs). Though ICIs are an important candidate in first-line therapy, consolidation therapy, adjuvant therapy, and other combination therapies involving traditional therapies, the need for new predictive immunotherapy biomarkers remains. Furthermore, ICI-induced resistance after an initial response makes it vital to seek and exploit new targets to benefit greatly from immunotherapy. As ICIs, tumor mutation burden (TMB), and microsatellite instability (MSI) are not ideal LC predictive markers, a multi-parameter analysis of the immune system considering tumor, stroma, and beyond can be the future-oriented predictive marker. The optimal patient selection with a proper adjuvant agent in immunotherapy approaches needs to be still revised. Here, we summarize advances in LC immunotherapy approaches with their clinical and preclinical trials considering cancer models and vaccines and the potential of employing immunology to predict immunotherapy effectiveness in cancer patients and address the viewpoints on future directions. We conclude that the field of lung cancer therapeutics can benefit from the use of combination strategies but with comprehension of their limitations and improvements.

12.
Vaccines (Basel) ; 10(11)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36366411

RESUMO

Cancer, which killed ten million people in 2020, is expected to become the world's leading health problem and financial burden. Despite the development of effective therapeutic approaches, cancer-related deaths have increased by 25.4% in the last ten years. Current therapies promote apoptosis and oxidative stress DNA damage and inhibit inflammatory mediators and angiogenesis from providing temporary relief. Thioredoxin-binding protein (TXNIP) causes oxidative stress by inhibiting the function of the thioredoxin system. It is an important regulator of many redox-related signal transduction pathways in cells. In cancer cells, it functions as a tumor suppressor protein that inhibits cell proliferation. In addition, TXNIP levels in hemocytes increased after immune stimulation, suggesting that TXNIP plays an important role in immunity. Several studies have provided experimental evidence for the immune modulatory role of TXNIP in cancer impediments. TXNIP also has the potential to act against immune cells in cancer by mediating the JAK-STAT, MAPK, and PI3K/Akt pathways. To date, therapies targeting TXNIP in cancer are still under investigation. This review highlights the role of TXNIP in preventing cancer, as well as recent reports describing its functions in various immune cells, signaling pathways, and promoting action against cancer.

13.
Pharmaceutics ; 13(12)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34959457

RESUMO

Vibrio parahaemolyticus is considered one of the most relevant pathogenic marine bacteria with a range of virulence factors to establish food-related gastrointestinal infections in humans. Cinnamaldehyde (CNMA) and some of its derivatives have antimicrobial and antivirulence activities against several bacterial pathogens. This study examined the inhibitory effects of CNMA and its derivatives on biofilm formation and the virulence factors in Vibrio species, particularly V. parahaemolyticus. CNMA and ten of its derivatives were initially screened against V. parahaemolyticus biofilm formation, and their effects on the production of virulence factors and gene expression were studied. Among the CNMA derivatives tested, 4-nitrocinnamaldehyde, 4-chlorocinnamaldehyde, and 4-bromocinnamaldehyde displayed antibacterial and antivirulence activities, while the backbone CNMA had weak effects. The derivatives could prevent the adhesion of V. parahaemolyticus to surfaces by the dose-dependent inhibition of cell surface hydrophobicity, fimbriae production, and flagella-mediated swimming and swarming phenotypes. They also decreased the protease secretion required for virulence and indole production, which could act as an important signal molecule. The expression of QS and biofilm-related genes (aphA, cpsA, luxS, and opaR), virulence genes (fliA, tdh, and vopS), and membrane integrity genes (fadL, and nusA) were downregulated in V. parahaemolyticus by these three CNMA analogs. Interestingly, they eliminated V. parahaemolyticus and reduced the background flora from the squid surface. In addition, they exhibited similar antimicrobial and antibiofilm activities against Vibrio harveyi. This study identified CNMA derivatives as potential broad-spectrum antimicrobial agents to treat biofilm-mediated Vibrio infections and for surface disinfection in food processing facilities.

14.
Front Microbiol ; 12: 714371, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34408739

RESUMO

Vibrio parahaemolyticus is a food-borne pathogen recognized as the prominent cause of seafood-borne gastroenteritis globally, necessitating novel therapeutic strategies. This study examined the antimicrobial and antivirulence properties of indole and 16 halogenated indoles on V. parahaemolyticus. Among them, 4-chloroindole, 7-chloroindole, 4-iodoindole, and 7-iodoindole effectively inhibited planktonic cell growth, biofilm formation, bacterial motility, fimbrial activity, hydrophobicity, protease activity, and indole production. Specifically, 4-chloroindole at 20 µg/mL inhibited more than 80% of biofilm formation with a minimum inhibitory concentration (MIC) of 50 µg/mL against V. parahaemolyticus and Vibrio harveyi. In contrast, 7-chloroindole inhibited biofilm formation without affecting planktonic cell growth with a MIC of 200 µg/mL. Both chlorinated indoles caused visible damage to the cell membrane, and 4-chloroindole at 100 µg/mL had a bactericidal effect on V. parahaemolyticus within 30 min treatment, which is superior to the effect of tetracycline at the same dose. The quantitative structure-activity relationship (QSAR) analyses revealed that chloro and bromo at positions 4 or 5 of the indole are essential for eradicating the growth of V. parahaemolyticus. These results suggest that halogenated indoles have potential use in antimicrobial and antivirulence strategies against Vibrio species.

15.
Front Microbiol ; 11: 584812, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193228

RESUMO

Indole and its derivatives have been shown to interfere with the quorum sensing (QS) systems of a wide range of bacterial pathogens. While indole has been previously shown to inhibit QS in Serratia marcescens, the effects of various indole derivatives on QS, biofilm formation, and virulence of S. marcescens remain unexplored. Hence, in the present study, we investigated the effects of 51 indole derivatives on S. marcescens biofilm formation, QS, and virulence factor production. The results obtained revealed that several indole derivatives (3-indoleacetonitrile, 5-fluoroindole, 6-fluoroindole, 7-fluoroindole, 7-methylindole, 7-nitroindole, 5-iodoindole, 5-fluoro-2-methylindole, 2-methylindole-3-carboxaldehyde, and 5-methylindole) dose-dependently interfered with quorum sensing (QS) and suppressed prodigiosin production, biofilm formation, swimming motility, and swarming motility. Further assays showed 6-fluoroindole and 7-methylindole suppressed fimbria-mediated yeast agglutination, extracellular polymeric substance production, and secretions of virulence factors (e.g., proteases and lipases). QS assays on Chromobacterium violaceum CV026 confirmed that indole derivatives interfered with QS. The current results demonstrate the antibiofilm and antivirulence properties of indole derivatives and their potentials in applications targeting S. marcescens virulence.

16.
Bioprocess Biosyst Eng ; 42(5): 687-696, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30661102

RESUMO

The efficiency of Cryptococcusalbidus was evaluated for its abilities to assimilate onion and apple hydrolysates as a medium for lipid production. Onion waste (OW) and apple waste (AW) were hydrolysed at an organic load of 2% total solids by indigenous microbes under mesophilic conditions. The indigenous microbes effectively hydrolysed both wastes giving the highest reducing sugar content of 4.8 g/L and 10.8 g/L with OW and AW hydrolysates, respectively. The microbiome analysis revealed that most of the indigenous microbes belonged to genus Bacillus and a significant population of α-proteobacteria and γ-proteobacteria were also present. Cell retention culture of C. albidus at a dilution rate of 0.01 h-1 resulted in a total dry cell weight (DCW) of 13.5 g/L with an intracellular lipid content of 20.0% at 168 h, corresponding to an enhancement of 3.48-folds and 2.37-folds in DCW and lipid concentration, respectively, as compared to batch fermentation.


Assuntos
Biocombustíveis , Carboidratos/biossíntese , Cryptococcus/crescimento & desenvolvimento , Lipídeos/biossíntese , Eliminação de Resíduos de Serviços de Saúde/métodos , Hidrólise , Lipídeos/química
17.
IET Nanobiotechnol ; 9(4): 220-5, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26224352

RESUMO

Manganese dioxide (MnO2) nanoparticles were synthesised by the reduction of potassium permanganate (KMnO4) using Kalopanax pictus leaf extract at room temperature. A transparent dark-brown colour appeared after the addition of K. pictus leaf extract to the solution of permanganate. The time course of the reduction of KMnO4and synthesis of MnO2 nanoparticles was monitored by means of UV-Vis spectra. The reduction of KMnO4occurred after addition of plant extract with disappearance of KMnO4specific peaks and emergence of peak specific for MnO2nanoparticles. MnO2nanoparticles showed absorption maxima at 404 nm. The electron dispersive X-ray spectroscopy analyses confirmed the presence of Mn and O in the sample. X-ray photoelectron spectroscopy revealed characteristic binding energies for MnO2nanoparticles. Transmission electron microscopy micrographs revealed presence of uniformly dispersed spherical shaped particles with average size of 19.2 nm. The selected area electron diffraction patterns revealed the crystalline nature of MnO2nanoparticles. Fourier transform-infrared spectroscopy spectra of pure MnO2show the occurrence of O-Mn-O vibrational mode at around 518 cm⁻¹. The phyto-synthesised MnO2nanoparticles showed degradation ability of dyes (congo red and safranin O) similar to chemically synthesised MnO2nanoparticles. This study shows simple and eco-friendly synthesis of MnO2nanoparticles by plant extract and their utilisation for dye degradation for the first time.


Assuntos
Kalopanax/química , Compostos de Manganês/química , Nanopartículas Metálicas/química , Óxidos/química , Extratos Vegetais/metabolismo , Biotecnologia , Compostos de Manganês/metabolismo , Nanotecnologia , Óxidos/metabolismo , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...